Galaxy NGC 6744

Ensci_euclid20240523e_1024

ensci_euclid20240523e May 23rd, 2024

Credit: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi

Here, Euclid captures NGC 6744, one of the largest spiral galaxies beyond our local patch of space. It’s a typical example of the type of galaxy currently forming most of the stars in the nearby Universe, making it a wonderful archetype to study with Euclid. This image is released as part of the Early Release Observations from ESA’s Euclid space mission.

Euclid’s large field-of-view covers the entire galaxy, revealing not only spiral structure on larger scales but also capturing exquisite detail on small spatial scales, and at a combination of wavelengths. This detail includes feather-like lanes of dust emerging as ‘spurs’ from the spiral arms, which Euclid is able to image with incredible clarity. Euclid’s observations will allow scientists to not only count individual stars within NGC 6744 but also trace the wider distribution of stars and dust in the galaxy, as well as mapping the dust associated with the gas that fuels new star formation. Forming stars is the main way by which galaxies grow and evolve, so these investigations are central to understanding galaxy evolution – and why our Universe looks the way it does today.

Euclid scientists are using this dataset to understand how dust and gas are linked to star formation; map how different stellar populations are distributed throughout galaxies and where stars are currently forming; and unravel the physics behind the structure of spiral galaxies, something that’s still not fully understood after decades of study. Spiral structure is important in galaxies, as spiral arms move and compress gas to foster star formation (most of which occurs along these arms). However, the exact role of spirals in coordinating ongoing star formation remains unclear. As the aforementioned ‘spurs’ along NGC 6744’s arms are only able to form in a strong enough spiral, these features therefore provide important clues as to why galaxies look and behave as they do.

The dataset will also allow scientists to identify clusters of old stars (globular clusters) and hunt for new dwarf galaxies around NGC 6744. In fact, Euclid has already found a new dwarf ‘satellite galaxy’ of NGC 6744 – a surprise given that this galaxy has been intensively studied in the past.

NGC 6744 lies 30 million light-years away in the constellation of Pavo.

Technical details: The data in this image were taken in just about one hour of observation. This colour image was obtained by combining VIS data and NISP photometry in Y and H bands; its size is 8200 x 8200 pixels. VIS and NISP enable observing astronomical sources in four different wavelength ranges. Aesthetics choices led to the selection of three out of these four bands to be cast onto the traditional Red-Green-Blue colour channels used to represent images on our digital screens (RGB). The blue, green, red channels capture the Universe seen by Euclid around the wavelength 0.7, 1.1, and 1.7 micron respectively. This gives Euclid a distinctive colour palette: hot stars have a white-blue hue, excited hydrogen gas appears in the blue channel, and regions rich in dust and molecular gas have a clear red hue. Distant redshifted background galaxies appear very red. In the image, the stars have six prominent spikes due to how light interacts with the optical system of the telescope in the process of diffraction. Another signature of Euclid special optics is the presence of a few, very faint and small round regions of a fuzzy blue colour. These are normal artifacts of complex optical systems, so-called ‘optical ghost’; easily identifiable during data analysis, they do not cause any problem for the science goals.

Provider: Euclid

Image Source: https://euclid.caltech.edu/image/euclid20240523e-galaxy-ngc-6744

Image Use Policy: CC BY-SA 3.0 IGO or ESA Standard Licence

Image Details Image Details

Image Type
Observation
Object Name
NGC 6744
Subject - Local Universe
Galaxy > Type > Spiral
Galaxy > Type > Barred

Distance Details Distance

Universescale2
30,000,000 light years
Ensci_euclid20240523e_128
 

Position Details Position Details

Position (ICRS)
RA = 19h 9m 45.6s
DEC = -63° 51’ 25.2”
Orientation
North is 15.5° CCW
Field of View
41.0 x 41.0 arcminutes
Constellation
Pavo

Color Mapping Details Color Mapping

  Telescope Spectral Band Wavelength
Blue Euclid (VIS) Optical 700.0 nm
Green Euclid (NISP) Infrared 1.1 µm
Red Euclid (NISP) Infrared 1.7 µm
Spectrum_base
Blue
Green
Red
Ensci_euclid20240523e_1280
×
ID
euclid20240523e
Subject Category
C.5.1.1.   C.5.1.2.  
Subject Name
NGC 6744
Credits
ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi
Release Date
2024-05-23
Lightyears
30,000,000
Redshift
30,000,000
Reference Url
https://euclid.caltech.edu/image/euclid20240523e-galaxy-ngc-6744
Type
Observation
Image Quality
Good
Distance Notes
Facility
Euclid, Euclid, Euclid
Instrument
VIS, NISP, NISP
Color Assignment
Blue, Green, Red
Band
Optical, Infrared, Infrared
Bandpass
Central Wavelength
700, 1100, 1700
Start Time
Integration Time
Dataset ID
Notes
Coordinate Frame
ICRS
Equinox
Reference Value
287.4398588, -63.8570067
Reference Dimension
8200, 8200
Reference Pixel
4100, 4100
Scale
-8.33238E-05, 8.33238E-05
Rotation
15.5
Coordinate System Projection:
TAN
Quality
Full
FITS Header
Notes
Creator (Curator)
URL
/image/ensci/euclid20240523e
Name
Email
Telephone
Address
City
State/Province
Postal Code
Country
Rights
CC BY-SA 3.0 IGO or ESA Standard Licence
Publisher
Euclid NASA Science Center at IPAC (ENSCI)
Publisher ID
ensci
Resource ID
Metadata Date
2024-05-30T04:51:02Z
Metadata Version
1.2
×

 

Detailed color mapping information coming soon...

×
Universescalefull
30,000,000 light years

Providers | Sign In