Johnny Appleseed of the Cosmos

Galex_glx2007-04r_img01_1024

galex_glx2007-04r_img01 August 15th, 2007

Credit: NASA/JPL-Caltech/C. Martin (Caltech)/M. Seibert(OCIW)

A new ultraviolet mosaic from NASA's Galaxy Evolution Explorer shows a speeding star that is leaving an enormous trail of "seeds" for new solar systems. The star, named Mira (pronounced my-rah) after the latin word for "wonderful," is shedding material that will be recycled into new stars, planets and possibly even life as it hurls through our galaxy.

Mira appears as a small white dot in the bulb-shaped structure at right, and is moving from left to right in this view. The shed material can be seen in light blue. The dots in the picture are stars and distant galaxies. The large blue dot at left is a star that is closer to us than Mira.

The Galaxy Evolution Explorer discovered Mira's strange comet-like tail during part of its routine survey of the entire sky at ultraviolet wavelengths. When astronomers first saw the picture, they were shocked because Mira has been studied for over 400 years yet nothing like this has ever been documented before.

Mira's comet-like tail stretches a startling 13 light-years across the sky. For comparison, the nearest star to our sun, Proxima Centauri, is only about 4 light-years away. Mira's tail also tells a tale of its history Ð the material making it up has been slowly blown off over time, with the oldest material at the end of the tail having been released about 30,000 years ago.

Mira is a highly evolved, "red giant" star near the end of its life. Technically, it is called an asymptotic giant branch star. It is red in color and bloated; for example, if a red giant were to replace our sun, it would engulf everything out to the orbit of Mars. Our sun will mature into a red giant in about 5 billion years.

Like other red giants, Mira will lose a large fraction of its mass in the form of gas and dust. In fact, Mira ejects the equivalent of the Earth's mass every 10 years. It has released enough material over the past 30,000 years to seed at least 3,000 Earth-sized planets or 9 Jupiter-sized ones.

While most stars travel along together around the disk of our Milky Way, Mira is charging through it. Because Mira is not moving with the "pack," it is moving much faster relative to the ambient gas in our section of the Milky Way. It is zipping along at 130 kilometers per second, or 291,000 miles per hour, relative to this gas.

Mira's breakneck speed together with its outflow of material are responsible for its unique glowing tail. Images from the Galaxy Evolution Explorer show a large build-up of gas, or bow shock, in front of the star, similar to water piling up in front of a speeding boat. Scientists now know that hot gas in this bow shock mixes with the cooler, hydrogen gas being shed from Mira, causing it to heat up as it swirls back into a turbulent wake. As the hydrogen gas loses energy, it fluoresces with ultraviolet light, which the Galaxy Evolution Explorer can detect.

Mira, also known as Mira A, is not alone in its travels through space. It has a distant companion star called Mira B that is thought to be the burnt-out, dead core of a star, called a white dwarf. Mira A and B circle around each other slowly, making one orbit about every 500 years. Astronomers believe that Mira B has no effect on Mira's tail.

Mira is also what's called a pulsating variable star. It dims and brightens by a factor of 1,500 every 332 days, and will become bright enough to see with the naked eye in mid-November 2007. Because it was the first variable star with a regular period ever discovered, other stars of this type are often referred to as "Miras."

Mira is located 350 light-years from Earth in the constellation Cetus, otherwise known as the whale. Coincidentally, Mira and its "whale of a tail" can be found in the tail of the whale constellation.

This mosaic is made up of individual images taken by the far-ultraviolet detector on the Galaxy Evolution Explorer between November 18 and December 15, 2006.

Provider: Galaxy Evolution Explorer

Image Source: /image/galex/glx2007-04r_img01

Curator: Spitzer Space Telescope, Pasadena, CA

Image Use Policy: Public Domain

View Options View Options

Image Details Image Details

Image Type
Observation
Object Name
Mira
Galex_glx2007-04r_img01_128
 

Position Details Position Details

Position
RA = 2h 20m 36.4s
DEC = -1° 0’ 46.6”
Orientation
North is up
Field of View
1.6 x 3.3 degrees
Constellation
Cetus
Galex_glx2007-04r_img01_1280
×
ID
glx2007-04r_img01
Subject Category
Subject Name
Mira
Credits
NASA/JPL-Caltech/C. Martin (Caltech)/M. Seibert(OCIW)
Release Date
2007-08-15
Lightyears
Redshift
Reference Url
/image/galex/glx2007-04r_img01
Type
Observation
Image Quality
Distance Notes
Facility
Instrument
Color Assignment
Band
Bandpass
Central Wavelength
Start Time
Integration Time
8928.2
Dataset ID
Notes
Coordinate Frame
Equinox
J2000
Reference Value
35.151667, -1.012941
Reference Dimension
3840, 8000
Reference Pixel
1600, 6400
Scale
-0.000416666666666667, 0.000416666666666667
Rotation
0.
Coordinate System Projection:
TAN
Quality
FITS Header
Notes
N rotated 15 deg CW from up
Creator (Curator)
Spitzer Space Telescope
URL
http://www.galex.caltech.edu
Name
Email
Telephone
Address
1200 E. California Blvd.
City
Pasadena
State/Province
CA
Postal Code
91125
Country
Rights
Public Domain
Publisher
Galaxy Evolution Explorer
Publisher ID
galex
Resource ID
Resource URL
/image/galex/glx2007-04r_img01
Related Resources
Metadata Date
2023-03-04T01:23:02Z
Metadata Version
1.2
×

 

Detailed color mapping information coming soon...

×

There is no distance meta data in this image.

 

Providers | Sign In