Hubble eXtreme Deep Field (XDF)

Stsci_2012-37a_1024

stsci_2012-37a September 25th, 2012

Credit: NASA, ESA, G. Illingworth, D. Magee, and P. Oesch (University of California, Santa Cruz), R. Bouwens (Leiden University), and the HUDF09 Team

Like photographers assembling a portfolio of best shots, astronomers have assembled a new, improved portrait of mankind's deepest-ever view of the universe. Called the eXtreme Deep Field, or XDF, the photo was assembled by combining 10 years of NASA Hubble Space Telescope photographs taken of a patch of sky at the center of the original Hubble Ultra Deep Field. The XDF is a small fraction of the angular diameter of the full Moon. The Hubble Ultra Deep Field is an image of a small area of space in the constellation Fornax, created using Hubble Space Telescope data from 2003 and 2004. By collecting faint light over many hours of observation, it revealed thousands of galaxies, both nearby and very distant, making it the deepest image of the universe ever taken at that time. The new full-color XDF image reaches much fainter galaxies, and includes very deep exposures in red light from Hubble's new infrared camera, enabling new studies of the earliest galaxies in the universe. The XDF contains about 5,500 galaxies even within its smaller field of view. The faintest galaxies are one ten-billionth the brightness of what the human eye can see. Magnificent spiral galaxies similar in shape to our Milky Way and the neighboring Andromeda galaxy appear in this image, as do the large, fuzzy red galaxies where the formation of new stars has ceased. These red galaxies are the remnants of dramatic collisions between galaxies and are in their declining years. Peppered across the field are tiny, faint, more distant galaxies that were like the seedlings from which today's striking galaxies grew. The history of galaxies - from soon after the first galaxies were born to the great galaxies of today, like our Milky Way - is laid out in this one remarkable image. Hubble pointed at a tiny patch of southern sky in repeat visits (made over the past decade) for a total of 50 days, with a total exposure time of 2 million seconds. More than 2,000 images of the same field were taken with Hubble's two premier cameras - the Advanced Camera for Surveys and the Wide Field Camera 3, which extends Hubble's vision into near-infrared light - and combined to make the XDF. "The XDF is the deepest image of the sky ever obtained and reveals the faintest and most distant galaxies ever seen. XDF allows us to explore further back in time than ever before," said Garth Illingworth of the University of California at Santa Cruz, principal investigator of the Hubble Ultra Deep Field 2009 (HUDF09) program. The universe is 13.7 billion years old, and the XDF reveals galaxies that span back 13.2 billion years in time. Most of the galaxies in the XDF are seen when they were young, small, and growing, often violently as they collided and merged together. The early universe was a time of dramatic birth for galaxies containing brilliant blue stars extraordinarily brighter than our Sun. The light from those past events is just arriving at Earth now, and so the XDF is a "time tunnel into the distant past." The youngest galaxy found in the XDF existed just 450 million years after the universe's birth in the big bang. Before Hubble was launched in 1990, astronomers could barely see normal galaxies to 7 billion light-years away, about halfway across the universe. Observations with telescopes on the ground were not able to establish how galaxies formed and evolved in the early universe. Hubble gave astronomers their first view of the actual forms and shapes of galaxies when they were young. This provided compelling, direct visual evidence that the universe is truly changing as it ages. Like watching individual frames of a motion picture, the Hubble deep surveys reveal the emergence of structure in the infant universe and the subsequent dynamic stages of galaxy evolution. The infrared vision of NASA's planned James Webb Space Telescope (Webb telescope) will be aimed at the XDF. The Webb telescope will find even fainter galaxies that existed when the universe was just a few hundred million years old. Because of the expansion of the universe, light from the distant past is stretched into longer, infrared wavelengths. The Webb telescope's infrared vision is ideally suited to push the XDF even deeper, into a time when the first stars and galaxies formed and filled the early "dark ages" of the universe with light. The XDF/HUDF09 team members are G. Illingworth (University of California, Santa Cruz), R. Bouwens (Leiden University), M. Carollo (Swiss Federal Institute of Technology, Zurich (ETH)), M. Franx (Leiden University), V. Gonzalez (University of California, Santa Cruz), I. Labbe (Leiden University), D. Magee and P. Oesch (University of California, Santa Cruz), M. Stiavelli (Space Telescope Science Institute), M. Trenti (University of Cambridge), and P. van Dokkum (Yale University). The public is invited to participate in a "Meet the Hubble eXtreme Deep Field Observing Team" webinar, in which three key astronomers of the XDF observing team will describe how they assembled the landmark image and explain what it tells us about the evolving universe.

Provider: Space Telescope Science Institute

Image Source: https://hubblesite.org/contents/news-releases/2012/news-2012-37

Curator: STScI, Baltimore, MD, USA

Image Use Policy: http://hubblesite.org/copyright/

Image Details Image Details

Image Type
Observation
Object Name
Hubble eXtreme Deep Field XDF
Subject - Local Universe
Galaxy > Type > Interacting
Galaxy > Grouping > Multiple
Galaxy > Type > Spiral
Galaxy > Type > Elliptical

Distance Details Distance

Universescale2
54,000,000 light years
Stsci_2012-37a_128
 

Position Details Position Details

Position (ICRS)
RA = 3h 32m 38.8s
DEC = -27° 47’ 30.1”
Orientation
North is 51.2° CCW
Field of View
2.4 x 2.1 arcminutes
Constellation
Fornax

Color Mapping Details Color Mapping

  Telescope Spectral Band Wavelength
Red Hubble (WFC3) Infrared (Y) 105.0 nm
Red Hubble (WFC3) Infrared (J) 125.0 nm
Red Hubble (WFC3) Infrared (H) 160.0 nm
Blue Hubble (ACS) Optical (B) 435.0 nm
Blue Hubble (ACS) Optical (V) 606.0 nm
Green Hubble (ACS) Optical (i) 775.0 nm
Green Hubble (ACS) Optical (I) 814.0 nm
Green Hubble (ACS) Optical (z) 850.0 nm
July 2002 to March 2012
Spectrum_base
Red
Red
Red
Blue
Blue
Green
Green
Green
Stsci_2012-37a_1280
×
ID
2012-37a
Subject Category
C.5.1.7   C.5.5.2   C.5.1.1   C.5.1.4  
Subject Name
Hubble eXtreme Deep Field, XDF
Credits
NASA, ESA, G. Illingworth, D. Magee, and P. Oesch (University of California, Santa Cruz), R. Bouwens (Leiden University), and the HUDF09 Team
Release Date
2012-09-25T00:00:00
Lightyears
54,000,000
Redshift
54,000,000
Reference Url
https://hubblesite.org/contents/news-releases/2012/news-2012-37
Type
Observation
Image Quality
Good
Distance Notes
M60 is roughly 54 million light-years (16 megaparsecs) distant.
Facility
Hubble, Hubble, Hubble, Hubble, Hubble, Hubble, Hubble, Hubble
Instrument
WFC3, WFC3, WFC3, ACS, ACS, ACS, ACS, ACS
Color Assignment
Red, Red, Red, Blue, Blue, Green, Green, Green
Band
Infrared, Infrared, Infrared, Optical, Optical, Optical, Optical, Optical
Bandpass
Y, J, H, B, V, i, I, z
Central Wavelength
105, 125, 160, 435, 606, 775, 814, 850
Start Time
Integration Time
Dataset ID
Notes
J
Coordinate Frame
ICRS
Equinox
2000.0
Reference Value
53.16184490560, -27.79169647720
Reference Dimension
2382.00, 2078.00
Reference Pixel
1527.55289869375, 682.79971116391
Scale
-0.00001667261, 0.00001667261
Rotation
51.16113767208
Coordinate System Projection:
TAN
Quality
Full
FITS Header
Notes
World Coordinate System resolved using PinpointWCS 0.9.2 revision 218+ by the Chandra X-ray Center FITS X FITS Y EPO X EPO Y 1547.92 742.10 563.68 546.03 1896.19 1794.06 2292.99 1193.19 1623.19 1788.27 2000.46 1540.85 2270.53 1298.49 2041.88 189.65 1662.98 1103.91 1153.35 774.32 850.63 985.35 151.50 1705.58 Center Pixel Coordinates: 1191.00 53.16057756277 1039.00 -27.78359070217
Creator (Curator)
STScI
URL
http://hubblesite.org
Name
Space Telescope Science Institute Office of Public Outreach
Email
outreach@stsci.edu
Telephone
410-338-4444
Address
3700 San Martin Drive
City
Baltimore
State/Province
MD
Postal Code
21218
Country
USA
Rights
http://hubblesite.org/copyright/
Publisher
STScI
Publisher ID
stsci
Resource ID
STSCI-H-p1237a-f-2382x2078.tif
Resource URL
https://mast.stsci.edu/api/latest/Download/file?uri=mast:OPO/product/STSCI-H-p1237a-f-2382x2078.tif
Related Resources
http://hubblesite.org/newscenter/archive/releases/2012/37
Metadata Date
2022-07-06T00:00:00
Metadata Version
1.2
×

 

Detailed color mapping information coming soon...

×
Universescalefull
54,000,000 light years

Providers | Sign In