Webb's First Deep Field: Galaxies in the Very Early Universe (NIRSpec MSA Emission Spectra)

Stsci_2022-035d_1024

stsci_2022-035d July 12th, 2022

Credit: NASA, ESA, CSA, STScI, Webb ERO Production Team

NASA’s Webb Telescope has yet another discovery machine aboard – the Near-Infrared Spectrograph’s (NIRSpec’s) microshutter array. This instrument has more than 248,000 tiny doors that can be individually opened to gather spectra (light) of up to approximately 150 individual objects simultaneously.

Of the thousands of distant galaxies behind galaxy cluster SMACS 0723, NIRSpec observed 48 individually – all at the same time – in a field that is approximately the size of a grain of sand held at arm’s length. Quick analysis made it immediately clear that several of these galaxies were observed as they existed at very early periods in the history of the universe, which is estimated to be 13.8 billion years old.

Look for the same feature highlighted in each spectrum. Three lines appear in the same order every time – one hydrogen line followed by two ionized oxygen lines. Where this pattern falls on each spectrum tells researchers the redshift of individual galaxies, revealing how long ago their light was emitted.

Light from the farthest galaxy shown traveled 13.1 billion years before Webb’s mirrors captured it. These observations mark the first time these particular emission lines have been seen at such immense distances – and these are only Webb’s initial observations. There may be even more distant galaxies in this image!

In these spectra, Webb has also shown us the chemical composition of galaxies in the very early universe for the first time. This was made possible by the telescope’s position in space – far away from Earth’s atmosphere, which filters out some infrared light – and its specialization in gathering high-resolution near-infrared light.

And since similar spectra from galaxies at closer distances have long been studied by other space- and ground-based observatories, astronomers already know a lot about the properties of nearby galaxies. Now, astronomers will be able to study and compare spectra from Webb to determine how galaxies have changed over billions of years, dating back to the early universe.

With Webb’s data, researchers can now measure each galaxy’s distance, temperature, gas density, and chemical composition. We will soon learn an incredible amount about galaxies that existed all across cosmic time!

Want to capture your own spectra with Webb’s microshutter array? Learn how scientists use the instrument by “taking” your own observations with this interactive and analyze the spectra it returns.

For a full array of Webb’s first images and spectra, including downloadable files, please visit: https://webbtelescope.org/news/first-images

NIRSpec was built for the European Space Agency (ESA) by a consortium of European companies led by Airbus Defense and Space (ADS) with NASA’s Goddard Space Flight Center providing its detector and micro-shutter subsystems.

Provider: Space Telescope Science Institute

Image Source: https://webbtelescope.org/contents/news-releases/2022/news-2022-035

Curator: STScI, Baltimore, MD, USA

Image Use Policy: http://hubblesite.org/copyright/

View Options

Image Details

Image Type
Chart
Object Name
SMACS 0723-73
Subject - Distant Universe
Galaxy > Grouping > Cluster
Galaxy > Type > Gravitationally Lensed

Distance

Universescale3
4,240,000,000 light years

Position Details

Position (FK5)
RA = 7h 23m 8.6s
DEC = -73° 26’ 59.2”
Constellation
Volans

Color Mapping

  Telescope Spectral Band Wavelength
Webb (NIRCam) Infrared -
Webb (NIRSpec) Infrared -
Stsci_2022-035d_1280
×
ID
2022-035d
Subject Category
D.5.5.3   D.5.1.8  
Subject Name
SMACS 0723-73
Credits
NASA, ESA, CSA, STScI, Webb ERO Production Team
Release Date
2022-07-12T00:00:00
Lightyears
4,240,000,000
Redshift
0.390
Reference Url
https://webbtelescope.org/contents/news-releases/2022/news-2022-035
Type
Chart
Image Quality
Good
Distance Notes
distance given to cluster at redshift z=0.390
Facility
Webb, Webb
Instrument
NIRCam, NIRSpec
Color Assignment
Band
Infrared, Infrared
Bandpass
Central Wavelength
Start Time
Integration Time
Dataset ID
Notes
Coordinate Frame
FK5
Equinox
Reference Value
110.7856779410000030, -73.4497732803999952
Reference Dimension
Reference Pixel
Scale
Rotation
Coordinate System Projection:
Quality
Position
FITS Header
Notes
Creator (Curator)
STScI
URL
http://hubblesite.org
Name
Space Telescope Science Institute Office of Public Outreach
Email
outreach@stsci.edu
Telephone
410-338-4444
Address
3700 San Martin Drive
City
Baltimore
State/Province
MD
Postal Code
21218
Country
USA
Rights
http://hubblesite.org/copyright/
Publisher
STScI
Publisher ID
stsci
Resource ID
STSCI-J-p22035d-f-16000x11600.tif
Metadata Date
2022-07-10T12:37:04-04:00
Metadata Version
1.2
×

 

Detailed color mapping information coming soon...

×
Universescalefull
4,240,000,000 light years